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Abstract: The addition of 2-lithio-2-methylpropionitrile (1) to chirally modified ns-arene-u'icarbonylchronﬁum
complexes (5) leads to the formation of 2-(cyclohex-2-en-1-on-5-yl)-2-methylpropionitrile (4) in good yields
and, under thermodynamically controlled conditions, with up to 48% ee.
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As reported earlier,! the addition of nucleophiles such as 2-lithio-2-methylpropionitrile (1) to n6-anisole-
tricarbonylchromium (2) proceeds with high regioselectivity (meta attack) to form an anionic intermediate (rac-3),
which, on quenching with trifluoroacetic acid and hydrolysis of the initially formed mixture of dienolethers, is
converted into the substituted cyclohexenone derivative (rac-4) in moderate to high overall yield (eq 1). The

product is formed as a racemic mixture because the (achiral) nucleophile must attack the enantiotopic meta positions
of 2 with equal probability.

OMe OMe O
Cl
H+
Me\i,NMe + @ _— ""ﬁMe - . @m Me eq 1
U CO)oCr CN Fen
1 ( O)SCr 2 e 3 Me 4 Me

If an element of asymmetry is built into the metal ligand system, enantioselectivity in the formation of 4 may
result. The ideal asymmetric element will optimize effectiveness (inducing high ee) with operational efficiency (in
introduction and recycling of the chiral auxiliary). With little detailed knowledge of the transition state for
nucelophile addition, it is not possible to predict with confidence the influence of an asymmetric ligand or
asymmetric substituent on the stereoselectivity of addition. From an operational standpoint, an attractive process
with arene-metal systems is the positioning on the arene of a heteroatom substituent bearing an asymmetric group
via metal-promoted SNAT substitution for halide.2 This concept has been used to provide asymmetric precursors
for nucleophilic addition to cationic arene-Mn(CO)3 complexes; unfortunately, while the % ee can be as high as
90% in forming the intermediate cyclohexadienyl Mn complexes (analogs of 3), the intermediates are not easy to
convert to simple organic products (analogs of 4).3 Compounds of type 5, bearing a chiral alkoxy (OR*)
substituent, should lead to 4 or ent-4 with asymmetric induction, because one of the diastereotopic meta positions
of 5 should now be attacked preferentially, and stereospecifically from the exo face. There is no basis at present for
predicting which isomer will be preferred nor the degree of selectivity. We undertook to probe the sensitivity to the
asymmetric environment provided by OR* by evaluating experimentally simple processes involving 5. Complexes
of type § were prepared in one step from the fluorobenzene complex 64 and the respective homochiral alcohols
(R*OH = 7-10; eq 2). As R*OH, (-)-menthol (7), (-)-8-phenylmenthotl (8),5 (+)-8-phenylneomenthol 9),6 and
(+)-8-phenylisomenthol (10)7 were employed (Table 1).
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Table 1: Preparation of the chiral complexes § according to Eq 2.8.9

R*OH product yield mp [a]p?0 in ethanol
7 Sa 81 % 124-25 °C -67.7°(c =0.53)
8 Sb 68 % 117-118 °C +56.2° (c = 1.13)
9 Sc 71 % (oil) -245°(c=0.74)

10 Sd 75 % 115-116°C -36.9°(c=048)

The nucleophile additions to the complexes 5§ were carried out on a 0.75 to 1.0 mmol scale by adding the
complex § at -78 °C to a THF solution of anion 1 (2 mol-eq, prepared from isobutyronitrile and LDA) followed by
stirring the mixture for a certain time and temperature, as specified in Table 2. Analysis was performed as follows:
At -78 °C, 0.25 mL of trifluoroacetic acid (TFA) was added to the reaction mixture, which was then diluted with
ether, and washed sequentially with cold aqueous ammonium hydroxide and with brine. After evaporation of the
solvents, the residue (mixture of enolethers) was treated with aqueous HCI in THF at 70 °C, until TLC indicated
complete conversion (ca. 1.5 h). Partition between brine and hexane/ether (5:1), drying and concentration of the
organic layer, and flash chromatography (hexane/EtOAc, 1.5:1) of the residue gave a mixture of 4/ent-4 as a
colorless solid separate from varying amounts (typically 60 to 80 %) of the respective recovered chiral auxiliary
alcohol (7-10).

The absolute configuration of 4 was assigned in the following way: A sample of (-)-4 (18% ee) was
hydrogenated (Scheme 1) and the resulting R-substituted cyclohexanone (-)-111! was analyzed by CD-
spectroscopy. A positive Cotton-effect at the ketone (n—7#) band (A = 283 nm) and application of the octant
rulel2 established that the major isomer is the (R)-isomer of 11 (Scheme 1). Therefore, compound 4 with a
negative molecular rotation must also be (R)-configured.
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Table 2: Preparation of 4/ent-4 by addition of 1 to complexes 5 followed by TFA quench and hydrolysis.10

entry complex temp: time _ yield  {alp ee. _major enantiomer
1 Sa -78°C;3h 80 % -106° 15 % 4
2 Sa 0°C;25h 65% -16.1° 2% 4
3 5b  -78°C;3h  76%  -103° 14 % 4
4 S5b 0°C;35h 73% -358° 48 % 4
5 Sb 0-10°C10h 70%  -29.4° 2% 4
6 §¢ -78°C;35h 62% 6.1° 10 % 4
7 Sc 0°C;35h 63% +9.0° 13% ent-4
8 Sd -78°C;4h 45 % +0.8 ° <2 % ent-4
9 Sd 0°C;35h 76% +20.9° 32% ent-4

® ©
Scheme 1
H,/Pd-C
—

The results of the various experiments, summarized in Table 2, clearly indicate that the reactions worked well at
various temperatures, providing 4/ent-4 in reliable chemical yields. Remarkably, the enantiomeric excess of the
product was always different (higher) when the reactions were run at 0 °C instead of -78 °C. Even the absolute
configuration of the major product enantiomer was found to be dependent on the reaction temperature in one case
(5¢). This behavior may be explained in the following way: at low temperatures (-78 °C), the nucleophile attack is
irreversible (kinetically controlled) and occurs (slightly) preferentially at the less hindered meta position to give, in
the case of Sb, the diastereomeric intermediates 12 and 13 (Scheme 3) in a ratio of about 1.3:1 (14 % de). On
warming the mixture to 0°C, the reverse reaction operates at a reasonable rate and the reaction becomes

thermodynamically controlled.14 The ratio of the intermediates changes; in the case of Sb, to ca. 3:1 (48 % de).
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The enantiomeric excesses achieved so far (up to 48 % ee) are only moderate by modern standards. However,
the ready accessibility of the chiral complexes 5, the easy recycling of the chiral auxiliary, and the potential

preparative value of 4 (or related compounds) suggest significant value of the methodology. 14
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